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Evaluation of discontinuous Galerkin and spectral volume
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SUMMARY

The discontinuous Galerkin (DG) and spectral volume (SV) methods are two recently developed high-
order methods for hyperbolic conservation laws capable of handling unstructured grids. In this paper,
their overall performance in terms of e�ciency, accuracy and memory requirement is evaluated using
a 2D scalar conservation laws and the 2D Euler equations. To measure their accuracy, problems with
analytical solutions are used. Both methods are also used to solve problems with strong discontinuities
to test their ability in discontinuity capturing. Both the DG and SV methods are capable of achieving
their formal order of accuracy while the DG method has a lower error magnitude and takes more
memory. They are also similar in e�ciency. The SV method appears to have a higher resolution for
discontinuities because the data limiting can be done at the sub-element level. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that nature is governed by many conservation laws. The motion of �uids
is one such phenomenon. The governing principles for �uids in motion are the conserva-
tion of mass, momentum and energy. Many other physical processes such as chemical reac-
tions, combustion, explosions, and multi-phase �ow problems can also be cast in conservation
forms. Therefore, progresses made in computational methods for conservation laws can signi�-
cantly impact the numerical simulation of numerous physical phenomena in nature. Real world
applications often are associated with complex geometries. Unstructured-grid based methods
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have shown tremendous promise in handling these geometries with relative ease. We there-
fore focus our attention on methods that can be applied on unstructured grids. During the
last two decades, many successful high-order methods have been developed for unstruc-
tured grids, e.g. the spectral element method [1] or multi-domain spectral method [2], k-exact
�nite volume (FV) method [3, 4], essentially non-oscillatory (ENO) weighted ENO (WENO)
method [5–8], the discontinuous Galerkin (DG) method [9–11], unstructured spectral method
[12], �uctuation-splitting (FS) method [13], and recently the spectral volume (SV) method
[14–17]. Since both the DG and SV methods are conservative at the element level, and can
handle triangular unstructured grids and discontinuities, they will be the focus of this paper.
The DG method is a �nite element method using discontinuous solution and test spaces

(usually piecewise polynomials of suitable degree), which means that the state variables are
not continuous across element boundaries. The �uxes through the element boundaries are then
computed using an approximate Riemann solver, mimicking the successful Godunov �nite
volume method [18]. Due to the use of Riemann �uxes across element boundaries, the DG
method is fully conservative at the element level. The SV method [14–17] is a �nite volume
method. Each element (called a spectral volume) is partitioned into structured sub-elements
named control volumes (CVs). Mean state-variables at the CVs inside a SV are employed
to construct a high-order polynomial within the element or SV, which is then utilized to
update the means at the CVs. The reconstruction problem can be solved analytically, and is
identical for all simplexes. Therefore, a high-order SV method is much more e�cient than a
high-order k-exact FV method, in which a reconstruction problem must be solved for each
control volume. The SV method is fully conservative at the sub-cell control volume level.
In Reference [14], the SV method was shown to allow larger time steps than the DG

method. On the other hand, the DG method was shown to have a lower error magnitude than
the SV method [19] although both have the same order of accuracy. In this paper, the DG and
SV methods are further evaluated in terms of accuracy, e�ciency and memory requirement for
both scalar and system conservation laws with both smooth and non-smooth problems [20, 21].
In the next two sections, the major features of these two methods for 2D conservation laws are
reviewed. In Section 4, the number of operations and memory requirement for both methods
are estimated. Section 5 presents several test cases. The numerical order of accuracy and CPU
times are shown for both methods to verify the estimates. The methods are also compared for
their shock capturing abilities using a problem with both smooth features and discontinuities.
Finally, concluding remarks based on the current study are summarized in Section 6.

2. DISCONTINUOUS GALERKIN METHOD

Consider the following 2D conservation laws:

@Q
@t
+
@f
@x
+
@g
@y
=0; r=(x; y)∈� (1)

where Q is the state variable, f and g are the �uxes in x and y directions, respectively.
In (1), Q, f and g can be either scalars or column vectors, representing scalar or system
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conservation laws, respectively. For example, (1) represents the Euler equations if

Q=



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�v

E



; f=


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�u

�uu+ p

�uv

u(E + p)
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
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�v

�uv

�vv+ p

v(E + p)




(2)

where � is the density, u and v are the velocity components in x and y directions, p is the
pressure, and E is the total energy. The pressure is related to the total energy by

E=
p
�− 1 +

1
2
(�u2 + �v2) (3)

with the ratio of speci�c heats � being a constant. Let F=(f; g). Then (1) can be expressed
in the following divergence form:

Qt +∇ · F=0 (4)

The numerical solution of (4) is sought on the computational domain � subject to proper
initial and boundary conditions.
Multiplying (4) by a scalar test function ’ and integrating over the domain �, we obtain

the following weighted residual formulation for Equation (4):

∫
�
’(Qt +∇ · F) dV

=
∫
�
’Qt dV +

∮
@�
’F · n dS −

∫
�

∇’ · F dV

=0; ∀’ (5)

Note that integrating by parts has been used in deriving (5), and that the integrals in (5) are
understood to be performed in a component-wise manner if Q is a column vector.

2.1. Space-discretization

Assume that the computational domain � is subdivided into N non-overlapping triangular
elements Ti. By applying (5) to each element Ti, we can obtain the discrete analogue of (5)
on the computational grid. Let the solution and test function be piece-wise polynomials in
each element. Denote the polynomial basis as ^(r)= {�1(r); : : : ; �n(r)}T. If the polynomial is
of order k, the dimension of the polynomial space in 2D is n=(k+1)(k+2)=2. The solution
and the test function on element Ti can be expressed as

Qi(r; t)=
n∑
j=1
Qji (t)�j(r); ’h=

n∑
j=1
’jh�j(r) (6)

The expansion coe�cients Qji denote the degrees of freedom (DOFs) of the numerical solution
for element Ti. Note that there is no global continuity requirement for Qi, which is generally
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discontinuous across the element boundaries. Using the solution and test function, (5) on
element Ti becomes

d
dt

∫
Ti
’hQi dV +

∮
@Ti
’hF · n dS −

∫
Ti

∇’h · F dV =0 (7)

Equation (7) must be satis�ed for any test function ’h. Since �j is the basis function for ’h,
(7) is equivalent to the following system of n equations:

d
dt

∫
Ti
�jQi dV +

∮
@Ti
�jF · n dS −

∫
Ti

∇�j · F dV =0; 16j6n (8)

Because the approximate solution is discontinuous at the element boundaries, the interface
�ux is not uniquely de�ned. It is at this stage the Riemann �ux used in the Godunov �nite
volume method [18] is borrowed. The interface �ux function F · n is replaced by a Riemann
�ux F̂(QL; QR ; n), where QL and QR are the state variables at the left and right side of the
interface. In order to guarantee consistency and conservation, the Riemann �ux must satisfy

F̂(Q;Q; n)=F(Q) · n; F̂(QL; QR ; n)= −F̂(QR ; QL;−n) (9)

The surface and volume integrals in (8) can be computed with Gauss quadrature formulas
of suitable orders of accuracy. Following the arguments given in Reference [10], the surface
integral must be exact for polynomials of degree 2k, while the volume integral must be exact
for polynomials of degree 2k − 1, i.e.∮

@Ti
�jF · n dS=

K∑
r=1

∫
Ar
�jF · n dS

∫
Ar
�jF · n dS≈

ns∑
s=1
wrs�j(rrs)F̂(QL(rrs); QR(rrs); nr)Ar∫

Ti
∇�j · F dV ≈

nv∑
s=1
ws∇�j(rs) · F(Qi(rs))Vi:

(10)

where K is the number of planar faces of Ti, ns is the number of quadrature points on a
planar face for the surface integral, nv is the number of quadrature points in the element for
the volume integral, wrs and ws are the Gauss quadrature weights, rrs and rs are the Gauss
quadrature points.
Let Ui= {Q1i ; : : : ; Qni }T be the DOFs for element Ti., and Wi denote the mass matrix

{∫
Ti
�j�l dV}. Equation (8) can be further written as

dUi

dt
+ (Wi)−1

(∮
@Ti
^F · n dS −

∫
Ti

∇^ · F dV
)
=0 (11)

By assembling together all the elemental contributions, a system of ordinary di�erential equa-
tions that govern the evolution of the discrete solution can be written as

dU
dt
=R(U ) (12)
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where U is the global vector of DOFs, and R(U ) is the global residual vector with the element
vector being

Ri(U )= −(Wi)−1
(∮

@Ti
^F · n dS −

∫
Ti

∇^ · F dV
)

(13)

2.2. Time integration

An explicit multi-stage third-order TVD (total variation diminishing) Runge–Kutta scheme
is employed for time integration [22]. The Runge–Kutta scheme can be expressed in the
following form:

U (1)=Un +�tR(Un)

U (2)= 3
4 U

n + 1
4[U

(1) + �tR(U (1))]

Un+1= 1
3 U

n + 2
3[U

(2) + �tR(U (2))]

(14)

2.3. Monotonicity limiter

For the non-linear Euler equations, it is necessary to perform data limiting to maintain stability
if the solution contains discontinuities. There are two possible ways of applying limiters in
the system setting. One way is to apply a limiter to each characteristic variable. The other
is to apply a limiter to each of the conservative variables. In 1D, the former has the nice
property of naturally degenerating to the scalar case if the hyperbolic system is linear. In
multiple dimensions, characteristic variables are de�ned in a particular direction, e.g. in the
face normal direction. In a fully unstructured grid, there is no co-ordinate direction to de�ne
a characteristic variable. Therefore, it is di�cult to design characteristics-based limiters in
multiple dimensions. In this paper, we choose the component-wise approach for the limiter,
which should also be much more e�cient than the characteristic approach. To this end, we
�rst establish the following numerical monotonicity criterion for each element:

Qimin6Qi(rs)6Qimax (15)

where Qimin and Qimax are the minimum and maximum cell-averaged solutions among all
its neighbouring elements sharing a face with Ti, and Qi(rs) is the solution at any of the
quadrature points. If (15) is TVD. If (15) is violated for any quadrature point, then it is
assumed that the element is close to a discontinuity, and the solution in the element is forced
locally linear, i.e.

Qi(r)=Qi +∇Qi · (r − ri); ∀r∈Ti (16)

where ri is the position vector of the centroid of Ti. The magnitude of the solution gradient
is maximized subject to the monotonicity condition given in (15). The original polynomial is
used to compute an initial guess of the gradient, i.e.

∇Qi=
(
@Qi
@x
;
@Qi
@y

)∣∣∣∣
ri
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This gradient may not satisfy (15). Therefore, it is limited by multiplying a scalar limiter
’∈ [0; 1] so that the following solution satis�es (15):

Qi(x)=Qi + ’∇Qi · (r − ri) (17)

The scalar limiter can be obtained by examining the numerical solutions at all the quadrature
points [15].

3. SPECTRAL VOLUME METHOD

In the SV method, the element Ti is named a spectral volume, which is further partitioned
into subcells named CVs, indicated by Ci; j, as shown in Figure 1. To represent the solution
as a polynomial of degree k in 2D, we need to partition the SV into n=(k + 1)(k + 2)=2
sub-cells. The DOFs in a SV are the volume-averaged mean variables Qi; j at the n CVs.
There are numerous ways of partitioning a SV, and not every partition is admissible in the
sense that the partition may not be capable of producing a degree k polynomial. Once n mean
solutions in the CVs of an admissible SV are given, a unique polynomial reconstruction can
be obtained from

pi(r)=
n∑
j=1
Lj(r)Qi; j (18)

where Lj(r) are also degree k polynomials satisfying∫
Ci; j
Lm(r) dV =Vi; j�jm (19)

and Vi; j is the volume of Ci; j. This high-order polynomial reconstruction facilitates a high-
order update for the mean solution of each CV. Integrating (1) in each CV , we obtain

dQi; j
dt

Vi; j +
K∑
r=1

∫
Ar
(F · n) dS=0 (20)

where K is the total number of faces in Ci; j. The �ux integral in (20) is then replaced by a
Gauss-quadrature formula that is exact for polynomials of degree k∫

Ar
(F · n) dS ≈

ne∑
s=1
wrsF(Q(rrs)) · nrAr (21)

where ne is the number of quadrature points on the rth face, wrs are the Gauss quadrature
weights, rrs are the Gauss quadrature points. Since the reconstructed polynomials are piece-
wise continuous, the solution is discontinuous across the boundaries of a SV, although it is
continuous across interior CV faces. The �uxes at the interior faces can be computed directly
based on the reconstructed solutions at the quadrature points. The �uxes at the boundary
faces of a SV are again computed using approximate Riemann solvers given the left and right
reconstructed solutions. The Runge–Kutta scheme is again used for time integration.
The TVD limiter in the SV method [15] is very similar to the one described in the last

section. The main di�erence is that the limiter is applied for the sub-cell averaged state
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d

d

(a)

(b)

(c)

Figure 1. Spectral volumes of various degrees: (a) Linear SV; (b) quadratic SV; and (c) cubic SV.

variables, rather than for the averaged state variables of macro element, i.e. the SV. This
is possible because of the inherent local resolution in the SV method. In order to make
an objective comparison with the DG method, the limiters are implemented in a similar
fashion.

4. NUMBER OF OPERATIONS AND MEMORY REQUIREMENT FOR DG AND SV

In order to provide a reasonable estimate of the number of operations for both methods, we
need to specify the governing equation and the Riemann solver. Two equations are considered
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826 YUZHI SUN AND Z. J. WANG

in this paper. One is the 2D scalar linear conservation law in which Q is a scalar, and f= aQ
and g= bQ with a and b being constants. The other equation is the 2D Euler equations. In
both cases, the Rusanov �ux [23] (also called local Lax–Friedrichs �ux) is selected. The
Rusanov �ux for the scalar conservation laws takes the following form:

F̂(QL; QR ; n)=

{
QL(anx + bny) if (anx + bny)¿0

QR(anx + bny) otherwise
(22)

Since modern computers can execute multiplications as fast as additions, one operation is
de�ned to be one multiplication or one addition. Internal functions such as sqrt is assumed to
cost 10 operations. In addition, each if statement is also counted as 1 operation. In this case,
this scalar Riemann solver costs MR =5 operations (3 operations to compute anx + bny, one
if statement, and another multiplication). The analytical �ux takes Ma = 4 operations.
For the Euler equations, the Rusanov Riemann �ux [23] takes the following form:

F̂(QL; QR ; n)= 1
2{[F(QL) + F(QR)] · n − �(QR −QL)} (23)

where �= |�vn|+ �c, �vn is the average face normal velocity, and �c the average speed of sound
at the interface. Given the vector of conservative variables, it is estimated that an analytical
�ux evaluation costs Ma = 24 operations, and a Riemann �ux takes MR =85 operations.
For simplicity we have not considered the cost of limiters in the number of operations. We

do believe that the limiters in the SV method are more expensive to implement than those in
the DG method because data limiting is carried out for each element in the DG method, but
for each subcell (CV) in the SV method.

4.1. DG method

We consider linear, quadratic and cubic elements, which yield second, third and fourth-order
spatial accuracy, respectively. The DOFs for these elements are shown in Figure 2. Over each
element Ti, the residual vector can be written as

Ri(U )= − (Wi)−1




∫
Ti
(F · ∇�1) dV −

∮
@Ti
F̂�1 dS

...∫
Ti
(F · ∇�n) dV −

∮
@Ti
F̂�n dS




(24)

The total number of operations can be roughly divided into three main parts, corresponding to
the cost for computing the state variables at all the Gauss quadrature points (N1), the number
of operations to compute the �uxes (N2), and the cost to multiply the mass matrix (N3).
There are a total of (nv + 3 ∗ ns) quadrature points that are used for surface and volume

integrals. We need n multiplications and n− 1 additions to compute one state variable given
the DOFs. Assume Q has nc component. Then the total number of operations to compute the
solutions at all the quadrature points is then

N1 = nc ∗ (2 ∗ n− 1) ∗ (nv+ 3 ∗ ns) (25)
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(a)

(b)

(c)

Figure 2. The degrees of freedom in the DG method: (a) Linear element; (b) quadratic element;
and (c) cubic element.

Note that we have ignored the number of operations to compute the limiter for simplicity.
To evaluate the volume integral, we need to compute the (analytical) �uxes at nv quadrature
points relating to n shape functions, while 3 ∗ ns Riemann �uxes are necessary to evaluate
the surface integral. However, Riemann �uxes are shared between two neighbouring elements.
Therefore, we need to halve the number of operations for the Riemann �uxes when evaluating
the number of operations per element. We also need to include the number of operations to
carry out the Gauss quadrature formula. Thus we obtain

N2 = n ∗ nv ∗Ma + 3 ∗ ns ∗MR=2 + nc ∗ n ∗ (2 ∗ nv− 1) + nc ∗ n ∗ (3 ∗ ns− 1) (26)

N3 is simply the cost of a square matrix multiplying a vector, which is 2 ∗ n ∗ n− n for one
component. For nc components, we therefore have N3 = nc ∗ (2∗n∗n−n). Note that N3 = 0 if
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828 YUZHI SUN AND Z. J. WANG

Table I. Number of operations for the DG method.

Equation k N nv ns NT

Scalar conservation law 1 3 3 2 141
2 6 6 3 512
3 10 12 4 1496

Euler equations 1 3 3 2 831
2 6 6 3 2627
3 10 12 4 7334

an orthogonal basis is used. The total cost to compute the residual vector for a single element
is then

NT =N1 + N2 + N3 (27)

The numbers of operations for the DG schemes of second to fourth orders are listed in Table I.

The memory requirement for the DG method is estimated as the following:

• Two solutions; one at the current time step, and the other at the last time step.
• Residual.
• Volume, centroid co-ordinates, face area, and face unit normal.
• Co-ordinates of quadrature points (face, cell).
• Gradient of shape function on quadrature points (face, cell).
• Shape functions, and their gradients at the centroid of the elements.

The storage requirement is roughly 90 words per element for a second-order DG scheme, 221
words per element for a third-order DG scheme, and 512 words per element for a fourth-order
DG scheme for the 2D Euler equations.

4.2. SV method

The degrees of freedom in the SV method are the mean state variables at the sub-cell control
volumes. Over each spectral volume Ti, the residual can be expressed as

Ri(U )=




−
∮
@Ci;1

F̂ dS

...

−
∮
@Ci;n

F̂ dS




(28)

There are two kinds of faces in a spectral volume. The faces that lie on the SV boundaries
are called Riemann faces, because the state variables are discontinuous across these faces.
The other faces that lie inside a SV are named continuous faces because the state variables
are continuous across these faces. Denote the total number of faces in a SV with nf, and the
number of Riemann faces nr. Then the number of continuous faces is then (nf−nr). Let the
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Table II. Number of operations for the SV method.

Equation k N ne nf nr NT

Scalar conservation law 1 3 1 9 6 81
2 6 2 15 9 468
3 10 2 27 12 1287

Euler equations 1 3 1 9 6 543
2 6 2 15 9 2553
3 10 2 27 12 6168

number of quadrature points on each face (edge) be ne. Then the number of operations to
compute the state variables at all the quadrature points is nc ∗ nf ∗ ne ∗ (2n− 1). In addition,
a total of (nf − nr) ∗ ne analytical �uxes need to be computed while nr ∗ ne Riemann �uxes
must be computed. Since the Riemann faces are shared between two neighbouring SVs, the
number of operations is again halved. We also include the number of operations to carry out
the Gauss quadrature formula (2 ∗ ne− 1) ∗ nf ∗ nc. Since the mass matrix in the SV method
is always the identity matrix, number of operations in the SV method can be written as

NT =N1 + N2 + N3

where

N1 = nc ∗ nf ∗ ne ∗ (2n− 1)
N2 = (nf − nr) ∗ ne ∗Ma + nr ∗ ne ∗MR=2 + (2 ∗ ne − 1) ∗ nf ∗ nc

N3 = 0

(29)

The numbers of operations for the SV schemes of second to fourth orders are listed in
Table II for both the scalar and system conservation laws. From Tables I and II, it is clear
that the second-order SV scheme is signi�cant faster than the second-order DG scheme, while
the higher order schemes have similar computational costs.
In the implementation of the SV method, the top priority has been to achieve the best

e�ciency. We therefore choose to store many geometric properties. The permanent memory
requirement is estimated as follows:

• Two solutions, one at the latest time step, and the other at the last time step.
• The residual, volumes and centroid co-ordinates for the CVs, the face unit normals and
areas for the sub-cell grid.

• Face to cell and face to node connectivity for the sub-cell grid.
• Co-ordinates of the sub-cell grid.
• A connectivity linking each quadrature point on a face to a point of the local standard
SV to reconstruct the solution at the quadrature point.

The storage requirement for the 2D Euler equations is roughly 99 words per element for a
second-order SV scheme, 194 words per element for a third-order SV scheme, and 361 words
per element for a fourth-order SV scheme. Note that the SV schemes take less memory than
the DG schemes at third and fourth orders of accuracy.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:819–838
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5. NUMERICAL TESTS

All of the computations were performed on a Pentium IV 2:0 GHz PC running the Redhat
Linux 7.2 operating system. The code was written in C++, optimized and compiled with the
default gcc compiler.

5.1. Scalar conservation laws

We �rst test the performance of both methods for the following linear scalar conservation
law:

ut + ux + uy=0; 0¡x¡2; 0¡y¡2

with u(x; y; 0)= sin(�(x + y)), and periodic boundary condition. The numerical simulation
was carried out until t=1 on two di�erent grids, one regular and one irregular as shown
in Figure 3. The �ner meshes are produced recursively from the coarser meshes by dividing
each triangle into four smaller triangles. The third-order TVD Runge–Kutta time integration
scheme was used with a su�ciently small time step that the errors are independent of the
time step. The same time step was used in both the DG and SV methods although larger
time steps are permitted in the SV method for stability. The errors are computed based on
the cell-averaged state variable on the element or the SV. No limiters were employed in the
simulations since the problem is smooth. Tables III and IV present the errors and CPU times
using both methods on the regular mesh, while Tables V and VI display the errors and CPU
times using both methods on the irregular mesh. Note that on the regular mesh, both methods
achieved the expected numerical order of accuracy in both the L1 and L∞ norms. However,
the DG method consistently produced L1 and L∞ errors of smaller magnitude than the SV
method. The SV method, on the other hand, is about 15–140% faster than the DG method
depending on the order of accuracy of the scheme. On the irregular grid, the DG method is
capable of achieving the expected order of accuracy in both the L1 and L∞ norms. Although
the SV method achieved the expected order of accuracy in the L1 norm, the third-order SV
scheme showed a reduction of half an order in the L∞ norm. This may indicate the quality
of the quadratic SV partition can be further improved. Again, the SV method is consistently
faster than the DG method on the irregular grid.

(a) (b)

Figure 3. Regular and irregular grids: (a) Regular (10×10×2); and (b) irregular (10×10×2).
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Table III. Errors and CPU times at t=1 for a 2D linear equation using the DG method on the regular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU (s)

2 10×10×2 1:14e−02 — 2:43e−02 — 3:33e−01
20×20×2 2:31e−03 2.30 5:83e−03 2.06 2.76e+00
40×40×2 5:09e−04 2.19 1:42e−03 2.04 2.23e+01
80×80×2 1:18e−04 2.11 3:49e−04 2.02 1.81e+02
160×160×2 2:84e−05 2.06 8:65e−05 2.01 1.45e+03

3 10×10×2 3:45e−04 — 7:65e−04 — 7:590e−01
20×20×2 4:27e−05 3.02 9:66e−05 2.99 6.37e+00
40×40×2 5:32e−06 3.00 1:21e−05 3.00 5.09e+01
80×80×2 6:65e−07 3.00 1:51e−06 3.00 4.27e+02
160×160×2 8:31e−08 3.00 1:89e−07 3.00 3.37e+03

4 10×10×2 1:39e−05 — 2:43e−05 — 1.66e+00
20×20×2 8:59e−07 4.02 1:52e−06 4.00 1.33e+01
40×40×2 5:34e−08 4.01 9:54e−08 4.00 1.08e+02
80×80×2 3:33e−09 4.00 5:97e−09 4.00 8.47e+02
160×160×2 2:08e−10 4.00 3:73e−10 4.00 7.28e+03

Table IV. Errors and CPU times at t=1 for a 2D linear equation using the SV method on the regular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU (s)

2 10×10×2 4:02e−02 — 5:86e−02 — 1:21e−01
20×20×2 1:06e−02 1.92 1:59e−02 1.88 9:47e−01
40×40×2 2:71e−03 1.97 4:09e−03 1.96 8.81e+00
80×80×2 6:83e−04 1.99 1:03e−03 1.99 8.39e+01
160×160×2 1:71e−04 2.00 2:59e−04 1.99 6.05e+02

3 10×10×2 3:73e−03 — 5:21e−03 — 4:68e−01
20×20×2 4:77e−04 2.97 7:12e−04 2.87 4.19e+00
40×40×2 6:04e−05 2.98 9:05e−05 2.98 3.67e+01
80×80×2 7:59e−06 2.99 1:14e−05 2.98 2.91e+02
160×160×2 9:51e−07 3.00 1:43e−06 2.99 2.21e+03

4 10×10×2 5:90e−05 — 8:40e−05 — 1.32e+00
20×20×2 3:73e−06 3.98 5:37e−06 3.97 1.35e+01
40×40×2 2:35e−07 3.99 3:34e−07 4.01 8.61e+01
80×80×2 1:48e−08 3.99 2:09e−08 4.00 6.90e+02
160×160×2 9:24e−10 4.00 1:31e−09 4.00 5.72e+03

5.2. Vortex propagation problem

This is an idealized problem for the Euler equations in 2D, which was used by Shu [8].
The mean �ow is {�; u; v; p}={1; 1; 1; 1}. An isotropic vortex is then added to the mean �ow,
i.e. with perturbations in u, v, and temperature T =p=�, and no perturbation in
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Table V. Errors and CPU times at t=1 for a 2D linear equation using the DG method on the irregular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU

2 10×10 2:17e−02 — 6:05e−02 — 3:77e−01
20×20 4:67e−03 2.22 1:64e−02 1.88 3.26e+00
40×40 1:07e−03 2.12 4:17e−03 1.97 2.65e+01
80×80 2:56e−04 2.06 1:05e−03 1.99 2.13e+02
160×160 6:26e−05 2.03 2:62e−04 2.00 1.75e+03

3 10×10 7:34e−04 — 2:56e−03 — 9:12e−01
20×20 8:72e−05 3.07 4:42e−04 2.53 7.50e+00
40×40 1:07e−05 3.03 6:34e−05 2.80 6.00e+01
80×80 1:33e−06 3.01 8:19e−06 2.95 4.8e+02
160×160 1:66e−07 3.00 1:03e−06 2.99 4.29e+03

4 10×10 4:10e−05 — 1:80e−04 — 1.93e+00
20×20 2:41e−06 4.09 1:30e−05 3.79 1.57e+01
40×40 1:47e−07 4.04 8:54e−07 3.92 1.27e+02
80×80 9:08e−09 4.01 5:72e−08 3.90 1.02e+03
160×160 5:65e−10 4.01 3:72e−09 3.94 8.87e+03

Table VI. Errors and CPU times at t=1 for a 2D linear equation using the SV method on the irregular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU

2 10×10 6:71e−02 — 1:18e−01 — 1:38e−01
20×20 1:83e−02 1.87 3:40e−02 1.80 1.30e+00
40×40 4:71e−03 1.96 9:25e−03 1.88 1.17e+01
80×80 1:19e−03 1.98 2:42e−03 1.94 8.61e+01
160×160 3:00e−04 1.99 6:20e−04 1.96 8.38e+02

3 10×10 8:36e−03 — 1:68e−02 — 5:59e−01
20×20 1:15e−03 2.86 2:95e−03 2.51 4.79e+00
40×40 1:52e−04 2.92 5:28e−04 2.48 3.88e+01
80×80 2:01e−05 2.91 1:31e−04 2.01 3.27e+02
160×160 2:64e−06 2.93 2:85e−05 2.20 2.71e+03

4 10×10 2:28e−04 — 7:39e−04 — 1.53e+00
20×20 1:37e−05 4.06 5:45e−05 3.76 1.35e+01
40×40 8:50e−07 4.01 3:54e−06 3.94 1.03e+02
80×80 5:33e−08 4.00 2:21e−07 4.00 7.98e+02
160×160 3:35e−09 3.99 1:34e−08 4.04 7.31e+03

entropy S=p=��:

(�u; �v)=
�
2�
e0:5(1−r

2)(− �y; �x)

�T=− (�− 1)�2
8��2

e1−r
2

�S=0
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Table VII. Errors and CPU times for the propagating vortex case at t=10 using
the DG method on the regular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU

2 10×10×2 7:74e−04 — 4:02e−03 — 8.91e+00
20×20×2 1:05e−04 2.88 1:12e−03 1.84 7.40e+01
40×40×2 1:52e−05 2.79 2:73e−04 2.04 6.12e+02
80×80×2 2:39e−06 2.67 1:21e−04 1.17 4.70e+03

3 10×10×2 2:86e−04 — 2:22e−03 — 2.11e+01
20×20×2 7:54e−05 1.92 9:98e−04 1.15 1.72e+02
40×40×2 1:26e−05 2.58 1:68e−04 2.57 1.36e+03
80×80×2 1:14e−06 3.47 2:60e−05 2.69 1.10e+04

4 10×10×2 1:20e−04 — 8:12e−04 — 4.45e+01
20×20×2 6:60e−06 4.18 7:14e−05 3.51 3.65e+02
40×40×2 1:47e−07 5.49 3:42e−06 4.38 2.89e+03
80×80×2 3:90e−09 5.24 2:10e−07 4.03 2.31e+04

Table VIII. Errors and CPU time for the propagating vortex case at t=10 using the SV
method on the regular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU

2 10×10×2 9:50e−04 — 6:19e−03 — 3.77e+00
20×20×2 1:92e−04 2.31 1:61e−03 1.94 2.96e+01
40×40×2 4:14e−05 2.21 8:65e−04 0.90 2.38e+02
80×80×2 9:92e−06 2.06 2:96e−04 1.55 1.91e+03

3 10×10×2 9:42e−04 — 5:49e−03 — 2.19e+01
20×20×2 9:20e−05 3.36 9:91e−04 2.47 1.68e+02
40×40×2 9:84e−06 3.22 2:45e−04 2.02 1.30e+03
80×80×2 1:11e−06 3.15 3:56e−05 2.78 1.02e+04

4 10×10×2 1:82e−04 — 1:20e−03 — 5.05e+01
20×20×2 1:01e−05 4.17 9:03e−05 3.73 3.91e+02
40×40×2 4:90e−07 4.37 1:01e−05 3.16 3.35e+03
80×80×2 3:16e−08 3.95 5:81e−07 4.12 2.46e+04

where (�x; �y)= (x − 5; y − 5), r2 = �x2 + �y2, and the vortex strength �=5. In the numerical
simulation, the computational domain is taken to be [0; 10]×[0; 10], with characteristic in�ow
and out�ow boundary conditions imposed on the boundaries.
It can be readily veri�ed that the Euler equations with the above initial conditions admit

an exact solution that moves with the speed (1,1) in the diagonal direction. Both the DG and
SV methods were employed to simulate this problem. The numerical simulation was carried
out until t=10 on the two di�erent grids shown in Figure 3.
The errors are computed based on the volume-averaged density on the element or the SV.

Tables VII and VIII present the errors and recorded CPU times of both methods on the regular
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Table IX. Errors and CPU times for propagating vortex case at t=10 using
the DG method on the irregular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU

2 10×10 6:29e−04 — 3:32e−03 — 1.02e+01
20×20 1:15e−04 2.45 9:97e−04 1.74 8.80e+01
40×40 2:78e−05 2.05 3:05e−04 1.71 7.07e+02
80×80 4:20e−06 2.73 8:93e−05 1.77 5.62e+03

3 10×10 1:27e−04 — 8:88e−04 — 2.41e+01
20×20 1:83e−05 2.79 3:26e−04 1.45 2.05e+02
40×40 1:93e−06 3.25 9:86e−05 1.73 1.60e+03
80×80 1:52e−07 3.67 1:61e−05 2.61 1.29e+04

4 10×10 4:23e−05 — 3:69e−04 — 5.12e+01
20×20 2:56e−06 4.05 6:17e−05 2.58 4.94e+02
40×40 9:80e−08 4.71 3:08e−06 4.32 3.38e+03
80×80 2:67e−09 5.20 2:12e−07 3.86 2.69e+04

Table X. Errors and CPU times for the propagating vortex case at t=10 using
the SV method on the irregular mesh.

Order of accuracy Grid L1 error L1 order L∞ error L∞ order CPU

2 10×10 1:04e−03 — 5:45e−03 — 4.38e+00
20×20 2:54e−04 2.03 1:92e−03 1.51 3.42e+01
40×40 8:98e−05 1.50 8:72e−04 1.14 3.16e+02
80×80 2:34e−05 1.94 2:90e−04 1.59 2.22e+03

3 10×10 5:06e−04 — 3:47e−03 — 2.53e+01
20×20 7:44e−05 2.77 7:25e−04 2.26 1.93e+02
40×40 9:75e−06 2.93 1:63e−04 2.15 1.51e+03
80×80 1:51e−06 2.69 3:37e−05 2.27 1.19e+04

4 10×10 1:09e−04 — 5:57e−04 — 5.71e+01
20×20 7:36e−06 3.89 8:76e−05 2.67 4.45e+02
40×40 3:84e−07 4.26 5:75e−06 3.93 3.51e+03
80×80 2:22e−08 4.11 4:00e−07 3.85 2.81e+04

mesh, while Tables IX and X display the errors and CPU times on the irregular mesh. Note
that the DG method is more consistent in achieving the expected order of accuracy than the
SV method on both the regular and irregular grids. The third and fourth-order DG schemes
appear to have smaller error magnitude than the corresponding SV schemes.
Based on the CPU times for the regular mesh, we note for per time step per element that

the DG method takes 43.47, 104.14, and 212:35 �s for linear, quadratic, and cubic elements
respectively, while SV method spends 27.42, 99.88, and 237:69 �s for second-, third-, and
fourth-order schemes. The SV method is faster than the DG method at second and third order,
but is slightly slower at fourth order.
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5.3. Double mach re�ection

This problem is also a standard test case [24] for high-resolution schemes, and has been studied
extensively by many researchers. The computational domain for this problem is chosen to be
[0; 4]×[0; 1]. The re�ecting wall lies at the bottom of the computational domain starting from
x= 1

6 . Initially a right-moving Mach 10 shock is positioned at x=
1
6 , y=0 and makes a 60

◦

angle with the x-axis. For the bottom boundary, the exact post-shock condition is imposed for
the region from x=0 to 1

6 and a solid wall boundary condition is used for the rest. For the
top boundary of the computational domain, the solution is set to describe the exact motion
of the Mach 10 shock. The left boundary is set at the exact post-shock condition, while the
right boundary is set as an out�ow boundary.

Figure 4. Density contours computed with the second-order DG scheme using
a TVD limiter (30 equally spaced contour lines from � = 1:528 to 20.863):

(a) coarse grid; (b) medium grid; and (c) �ne grid.
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Figure 5. Density contours computed with the second-order SV scheme using
a TVD limiter (30 equally spaced contour lines from �=1:528 to 20.863):

(a) coarse grid; (b) medium grid; and (c) �ne grid.

The numerical simulation was carried out until t=0:2. A mesh re�nement study was car-
ried out on three di�erent grids. The grids are generated from regular Cartesian meshes by
subdividing each Cartesian cell into two triangles. The coarse grid has 25 ∗ 100 ∗ 2 triangles,
the medium grid 50∗188∗2 triangles, and the �ne grid consists of 120∗480∗2 triangles. The
density contours with 30 equally spaced contour lines from �=1:528 to 20.863 are shown in
Figures 4 and 5 for the second-order DG scheme and SV scheme. Note that the ‘blown-up’
region was also shown in those �gures.
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Note that the SV method has a higher resolution than the DG method for the shock, slip
line and the other �ner features near the triple point. The main reason is that the TVD limiter
in the SV method is applied for the sub-cells, but the limiter in the DG method is applied
for the elements (macro SVs).

6. CONCLUDING REMARKS

We have presented a comparison of the DG and SV methods for the 2D scalar conservation
laws and Euler equations. Generally speaking, the DG method has a lower error magnitude
than the SV method. In the scalar case, the SV schemes are consistently faster than the DG
schemes of the same order of accuracy for each residual evaluation. For the Euler equations,
the second-order SV scheme is faster than the second-order DG scheme. However, third-
and fourth-order SV schemes are quite similar to the corresponding DG schemes in terms of
e�ciency (¡12% in di�erence). It is also clear that the SV method has a higher resolution
for discontinuities than the DG method because of the sub-cell average based data limiting.
We also con�rm that the SV method takes less memory and allows larger time steps than the
DG method for both the 2D scalar conservation laws and Euler equations.
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